translate
Tuesday, October 5, 2010
eyes
Eyes are organs that detect light, and convert it to electro-chemical impulses in neurons. The simplest photoreceptors in conscious vision connect light to movement.
In higher organisms complex neural pathways exist that connect the eye, via the optic nerve to the visual cortex and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system.
Image-resolving eyes are present in molluscs, chordates and arthropods.
The simplest "eyes", such as those in microorganisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment..
here are ten different eye layouts—indeed every way of capturing an image known to man, with the exceptions of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface.
Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behavior or environment. The only limitations specific to eye types are that of resolution—the physics of compound eyes prevents them from achieving a resolution better than 1°.
Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling creatures.
Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being cilliated (as in the vertebrates) or rhabdomeric. These two groups are not monophyletic; the cnidaria also possess cilliated cells, and some annelids possess both.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment